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Abstract

Some probabilistic illustrations of the reliability coefficient are provided to assist in interpretation

of this measure. All explanations are derived under the assumption that the joint distribution of

examinee scores from two parallel tests is well approximated by a bivariate normal distribution.
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A number of probabilistic interpretations of reliability coefficients are readily available given

concepts of simple random sampling from a very large population and given a bivariate normal

approximation for the joint distribution of test scores from two parallel test forms. In this note,

three such interpretations are provided. The first considers the probability that, if two examinees

are selected at random and scores on Forms 1 and 2 are recorded, then the same examinee

obtains the higher score on both forms. The second considers the probability that an examinee

who has exceeded a cut-point score on Form 1 also exceeds the cut point on Form 2. The third

interpretation considers the interval width based on Form 1 that suffices to include the examinee

score on Form 2 with a given probability.

In each example, it is an elementary matter to provide a table that indicates, for a given

reliability, what is the corresponding probability or interval width. Thus the tables may have some

potential for use in educating relatively less technically oriented audiences about the meaning

of reliability. The mathematical formulas for computation of table entries are not difficult to

derive, but they are not themselves readily understood by audiences that are not mathematically

sophisticated.

1. Constant Order

Let two examinees numbered 1 and 2 be obtained by simple random sampling without

replacement from a very large population of examinees. Let examinee k, k equals 1 or 2, have

score Xjk on form j. Given the assumption of simple random sampling, the joint distribution

of scores X11 and X21 for Examinee 1 is the same as the joint distribution of the scores X12

and X22 for Examinee 2. Given the assumption that the population is very large, scores for

Examinee 1 can be regarded as independent of scores for Examinee 2. For simplicity, assume that

the joint distribution of X1k and X2k is well approximated by a bivariate normal distribution.

The assumption that the forms are parallel implies that X1k and X2k have common mean µ and

common standard deviation σ for each examinee k. Let the reliability coefficient be ρ2, so that ρ2

is the correlation of X1k and X2k for each examinee k.

Consider the concordance probability C that the same examinee has the higher score on both

examinations. Under the bivariate normal approximation, this probability, which is encountered

in the study of Kendall’s τ (Kruskal, 1958), is equal to 0.5 + π−1 sin−1(ρ2). Table 1 provides a

table of C and ρ2.
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Table 1.
Relationship of Reliability and Concordance

Reliability Concordance Concordance
(form to form) (form to true)

0.0 0.50 0.50
0.1 0.53 0.60
0.2 0.56 0.65
0.3 0.60 0.68
0.4 0.63 0.72
0.5 0.67 0.75
0.6 0.70 0.78
0.7 0.75 0.82
0.8 0.80 0.85
0.9 0.86 0.90

One simple criterion based on the table is the point at which the concordance probability

has progressed half way from its minimum value of 0.5 to its maximum value of 1. This point is

reached at ρ2 = 1/21/2 = 0.71.

Interestingly, the choice of ρ2 = 1/21/2 arises from a very different case. For examinee k,

consider the best predictor of score X2k on Form 2 from score X1k on Form 1. Under the bivariate

normal approximation, the mean-squared error of this predictor is σ2(1− ρ4). Without knowledge

of X1k, σ2 is the best mean-squared error achievable by prediction of X2k by a constant c. If

ρ2 = 1/21/2, then the mean-squared error σ2/2 from optimal prediction of X2k from X1k is half

the mean-squared error σ2 from optimal prediction of X2k by a constant.

Results in this section are more conservative than those obtained from an interpretation based

on a comparison of rankings based on true scores and on observed scores. For each examinee k,

there exists a variable Tk, the true score of examinee k, with mean µ such that Xjk = Tk + ejk

for form j and such that Tk, ejk, and ejk are uncorrelated for each form j and examinee k. The

standard deviation of Tk is σ(1− ρ2)1/2, the standard deviation of ejk is σρ, and the correlation of

Xjk and Tk is ρ. Under the normal approximation, the variables T1, T2, e11, e21, e12, and e22 are

mutually independent (Lord & Novick, 1968, chap. 3).

Under the normal approximation, the concordance probability CT that the same examinee

has the higher score on form k and has the higher true score is equal to 0.5+π−1 sin−1(ρ). Results

are listed in Table 1. In this case, the concordance probability of 0.75 is attained for a reliability
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of only 0.5. Nonetheless, very high concordance probabilities still require quite high reliability, as

is evident from the probability of 0.90 for the reliability of 0.90.

2. Cut Points

As an alternative interpretation, consider use of cut points. Suppose that a score is acceptable

if it falls above the 100pth percentile for some p greater than 0 and less than 1. Alternatively, a cut

point z may have been selected, and p is the probability that a randomly selected examinee scores

below z. Consider the conditional probability that an examinee receives an acceptable score on

Form 2 given that the examinee receives an acceptable score on Form 1. Let φ denote the standard

normal density, let Φ denote the standard normal distribution function, and let q = Φ−1(p) be the

standard normal percentile that corresponds to 100p. Then elementary arguments may be used to

show that the normal approximation yields the joint probability

J =

∫
[1 − Φ([q − ρy]/(1 − ρ2)1/2)]2φ(y)dy

that a randomly selected examinee receives an acceptable score on both Form 1 and Form 2, and

J/(1 − p) is the corresponding conditional probability that the examinee receives an acceptable

score on Form 2 given that an acceptable score is received on Form 1. Results are provided in

Table 2.

The table suggests that exceeding a cut point once does not provide much assurance of

exceeding a cut point again even with rather high reliability. Reliability does matter, for results

for ρ2 = 0.9 are considerably better than for ρ2 = 0.8. The greatest challenge is for high cut

points. Even for a reliability of 0.9, for 100p = 80, the conditional probability is only 0.75 that the

cut point on Form 2 is exceeded given that the cut point on Form 1 is exceeded.

More favorable results are obtained if one considers the probability that the score Xjk exceeds

the cut point given that the true score Tk exceeds the cut point. In this instance, the conditional

probability sought is

(1 − p)−1
∫ ∞
q

[1 − Φ([q − ρy]/(1 − ρ2)1/2)]φ(y)dy.

For some results, see Table 2. Note that high cut points still present challenges, as is evident from

the case of 100p = 80 and ρ2 = 0.9.
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Table 2.
Probabilities of Exceeding Cut Points

Percentile Reliability Joint probability Conditional probability Conditional probability
(two forms) (Form 2 given Form 1) (form given true)

20 0.0 0.64 0.80 0.80
40 0.0 0.36 0.60 0.60
60 0.0 0.16 0.40 0.40
80 0.0 0.04 0.20 0.20
20 0.2 0.66 0.82 0.85
40 0.2 0.39 0.65 0.72
60 0.2 0.19 0.48 0.58
80 0.2 0.06 0.28 0.41
20 0.4 0.68 0.85 0.88
40 0.4 0.42 0.70 0.77
60 0.4 0.22 0.56 0.66
80 0.4 0.08 0.38 0.52
20 0.6 0.70 0.87 0.91
40 0.6 0.46 0.76 0.82
60 0.6 0.26 0.64 0.74
80 0.6 0.10 0.50 0.62
20 0.8 0.73 0.91 0.94
40 0.8 0.50 0.83 0.88
60 0.8 0.30 0.75 0.82
80 0.8 0.13 0.65 0.74
20 0.9 0.75 0.94 0.95
40 0.9 0.53 0.88 0.92
60 0.9 0.33 0.83 0.88
80 0.9 0.15 0.75 0.82

3. Intervals

Consider use of the score X1k on Form 1 to provide an interval that contains the score X2k

on Form 2 with a given probability p. If z = Φ−1(1 − p/2), then a suitable interval based on

the normal approximation is centered at µ + ρ2(X1 − µ) and has width 2zσ(1 − ρ4)1/2. Table 3

provides intervals for p = 0.05, so that the coverage probability is 0.95, and for σ = 100, a value

relatively close to that encountered with the SAT R© I math or verbal examination. For narrower

intervals, the case of p = 0.5 is also considered, so that the coverage probability is 0.5. The

intervals for p = 0.5 are considerably narrower than for p = 0.05.

The table suggests that widths are not greatly reduced unless reliability is rather high. The

width is not halved until ρ4 = 0.75, so that ρ2 = 0.866. Even for a ρ2 of 0.6, the width is 80% of
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Table 3.
Widths of 100(1-p)% Prediction Intervals for Parallel Form Score and True Score

for Standard Deviation of 100

Form score True score
Reliability p = 0.05 p = 0.5 p = 0.05 p = 0.5

0.0 392 135 392 135
0.1 390 134 372 128
0.2 384 132 351 121
0.3 374 129 328 113
0.4 359 124 304 104
0.5 339 117 277 95
0.6 314 108 248 85
0.7 280 96 215 74
0.8 235 81 175 60
0.9 171 59 124 43

the width for ρ2 = 0.

Prediction intervals for the true score Tk that are based on the observed score X1k are a bit

smaller. Under the normal approximation, an interval that contains Tk with probability 1− p has

center µ + ρ(X1 − µ) and width 2zσ(1− ρ2)1/2. Results can be found in Table 3. Here, relative to

the interval width for ρ2 = 0, the interval width is halved if ρ2 = 0.75, and the interval width is

divided by 3 if ρ2 = 0.89.

4. Conclusions

The proposed interpretations of reliability can be presented to indicate the consequences of

reliability coefficients of various values to provide a test user a notion of reasonable expectations.

On the whole, the measures presented appear to suggest relatively high standards for reliability

coefficients, although different individuals may interpret the numerical results in quite distinct

ways.
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